domingo, 18 de abril de 2010

formas alotropicas del carbono y grupos funcionales organicos


formas alotropicas del carbono

GRAFITO
Una de las formas en que se encuentra el carbono es el grafito, que es el material del cual está hecha la parte interior de los lápices de madera. El grafito tiene exactamente los mismos átomos del diamante, pero por estar dispuestos en diferente forma, su textura fuerza y color son diferentes A presión normal, el carbono adopta la forma del grafito, en la que cada átomo está unido a otros tres en un plano compuesto de celdas hexagonales; este estado se puede describir como 3 electrones de valencia en orbitales híbridos planos sp2 y el cuarto en el orbital p .Las dos formas de grafito conocidas alfa (hexagonal) y beta (romboédrica) tienen propiedades físicas idénticas. Los grafitos naturales contienen más del 30% de la forma beta, mientras que el grafito sintético contiene únicamente la forma alfa. La forma alfa puede transformarse en beta mediante procedimientos mecánicos, y ésta recristalizar en forma alfa al calentarse por encima de 1000 °C. Debido a la deslocalización de los electrones del orbital pi, el grafito es conductor de la electricidad, propiedad que permite su uso en procesos de electroerosión. El material es blando y las diferentes capas, a menudo separadas por átomos intercalados, se encuentran unidas por enlaces de Van de Waals, siendo relativamente fácil que unas deslicen respecto de otras, lo que le da utilidad como lubricante.
ESTRUCTURA ATOMICA DEL GRAFITO
En el grafito los átomos de carbono presentan hibridación sp2, esto significa que forma tres enlaces covalentes en el mismo plano a un ángulo de 120º (estructura hexagonal) y que un orbital Π perpendicular a ese plano quede libre (estos orbitales deslocalizados son fundamentales para definir el comportamiento eléctrico del grafito) . El enlace covalente entre los átomos de una capa es extremadamente fuerte, sin embargo las uniones entre las diferentes capas se realizan por fuerzas de Van der Waals e interacciones entre los orbitales Π, y son mucho más débiles. Se podría decir que el grafito son varias capas de grafeno montadas.
SUS APLICACIONES
♥El grafito es un material refractario y se emplea en ladrillos, crisoles, etc. Al deslizarse las capas fácilmente en el grafito, resulta ser un buen lubricante sólido.
♥Se utiliza en la fabricación de diversas piezas en ingeniería, como pistones, juntas, arandelas, rodamientos, etc.
♥Este material es conductor de la electricidad y se usa para fabricar electrodos. También tiene otras aplicaciones eléctricas. Se emplea en reactores nucleares, como moderadores y reflectores.
♥El grafito mezclado con una pasta sirve para fabricar lápices.
♥Es usado para crear discos de grafito parecidos a los de discos vinilo salvo por su mayor resistencia a movimientos bruscos de las agujas lectoras.
♥Se puede crear Grafeno, el material más conductor y resistente que existe, futuro sustituto del silicio en la fabricación de chips.

EL DIAMENTE
A muy altas presiones, el carbono adopta la forma del diamante, en el cual cada átomo está unido a otros cuatro átomos de carbono, encontrándose los 4 electrones en orbitales sp3, como en los hidrocarburos. El diamante presenta la misma estructura cúbica que el silicio y el germanio y, gracias a la resistencia del enlace químico carbono-carbono, es, junto con el nitruro de boro, la sustancia más dura conocida. La transición a grafito a temperatura ambiente es tan lenta que es indetectable. Bajo ciertas condiciones, el carbono cristaliza como lonsdaleíta, una forma similar al diamante pero hexagonal. El orbital híbrido sp1 que forma enlaces covalentes sólo es de interés en química, manifestándose en algunos compuestos, como por ejemplo el acetileno.
PROPIEDADES DEL MATERIAL
Un diamante es un cristal transparente de átomos de carbono enlazados tetraedralmente (sp3) que cristaliza en la red de diamante, que es una variación de la estructura cúbica centrada en la cara. Los diamantes se han adaptado para muchos usos, debido a las excepcionales características físicas. Las más notables son su dureza extrema y su conductividad térmica (900–2.320 W/(m·K))[8] , así como la amplia banda prohibida y alta dispersión óptica.[9] Sobre los 1.700 °C (1.973 K / 3.583 °F) en el vacío o en atmósfera libre de oxígeno, el diamante se convierte a grafito; en aire la transformación empieza aproximadamente a 700 °C.[10] Los diamantes existentes en la naturaleza tienen una densidad que va desde 3,15–3,53 g/cm3, con diamantes muy puros generalmente extremadamente cerca a 3,52 g/cm3.
General

Categoría Minerales nativos
Fórmula química c
Color Típicamente amarillo, marrón o gris a incoloro. Menos frecuente azul, verde, negro, blanco translúcido, rosado, violeta, anaranjado, púrpura y rojo (fancy diamond).
Raya Incolora
Lustre Adamantino
Transparencia Transparente a subtransparente a translúcido.
Sistema cristalino Isométrico-Hexoctaédrico (Sistema cristalino cúbico) Fractura Concoidal
Dureza 10
Densidad3,5 – 3,53 g/cm3
Índice de refracción 2,4175 – 2,4178
Birrefringencia Ninguna
Pleocroísmo Ninguno Propiedades ópticas Refractiva simple

LOS FULERENOS


Los fullerenos o fulerenos son la tercera forma más estable del carbono, tras el diamante y el grafito. El primer fullereno se descubrió en 1985 y se han vuelto populares entre los químicos, tanto por su belleza estructural como por su versatilidad para la síntesis de nuevos compuestos, ya que se presentan en forma de esferas, elipsoides o cilindros. Los fullerenos esféricos reciben a menudo el nombre de buckyesferas y los cilíndricos el de buckytubos o nanotubos. Reciben este nombre de Buckminster Fuller, que empleó con éxito la cúpula geodésica en la arquitectura. Los fulerenos tienen una estructura similar al grafito, pero el empaquetamiento hexagonal se combina con pentágonos (y en ciertos casos, heptágonos), lo que curva los planos y permite la aparición de estructuras de forma esférica, elipsoidal o cilíndrica. El constituido por 60 átomos de carbono, que presenta una estructura tridimensional y geometría similar a un balón de fútbol, es especialmente estable. Los fulerenos en general, y los derivados del C60 en particular, son objeto de intensa investigación en química desde su descubrimiento a mediados de los 1980.

El Buckminsterfulereno o fulereno de C60
El fullereno más conocido es el buckminsterfulereno. Se trata del fullereno más pequeño con 60 átomos de carbono (C60) en el que ninguno de los pentágonos que lo componen comparten un borde ; si los pentángonos tienen una arista en común, la estructura estará desestabilizada (véase pentaleno). La estructura de C60 es la de una figura geométrica truncada y se asemeja a un balón de fútbol (domo geodésico), constituido por 20 hexágonos y 12 pentágonos, con un átomo de carbono en cada una de las esquinas de los hexágonos y un enlace a lo largo de cada arista. El nombre de Buckminsterfulereno viene de Richard Buckminster Fuller con motivo a una similitud de la molécula con una de las construcciones del mencionado arquitecto.
SUS PROPIEDADES
A comienzos del siglo XXI, las propiedades químicas y físicas de fulerenos todavía están bajo intenso estudio, en laboratorios de investigación pura y aplicada. En abril de 2003, se estaba estudiando el potencial uso medicinal de los fulerenos, fijando antibióticos espécificos en su estructura para atacar bacterias resistentes y ciertas células cancerígenas, tales como el melanoma. Los fulerenos no son muy reactivos debido a la estabilidad de los enlaces tipo grafito, y es también muy poco soluble en la mayoría de disolventes. Entre los disolventes comunes para los fulerenos se incluyen el tolueno y de disulfuro de carbono. Las disoluciones de buckminsterfulereno puro tienen un color púrpura intenso. El fulereno es la única forma alotrópica del carbono que puede ser disuelta. Los investigadores han podido aumentar su reactividad uniendo grupos activos a las superficies de los fulerenos. El buckminsterfulereno no presenta "superaromaticidad", es decir, los electrones de los anillos hexagonales no pueden deslocalizar en la molécula entera. Se pueden atrapar otros átomos dentro de los fulerenos; de hecho existen evidencias de ello gracias al análisis del gas noble conservado en estas condiciones tras el impacto de un meteorito a finales del periodo Pérmico. En el campo de la nanotecnología, la resistencia térmica y la superconductividad son algunas de las características más profundamente estudiadas. Un método habitual para producir fulerenos es hacer pasar una corriente eléctrica intensa entre dos electrodos de grafito próximos en atmósfera inerte. El arco resultante entre los dos electrodos produce un depósito de hollín del que se pueden aislar muchos fulerenos diferentes.
LOS NANOTUBOS



Los nanotubos de carbono son una forma alotrópica del carbono, como el diamante, el grafito o los fulerenos. Su estructura puede considerarse procedente de una lámina de grafito enrolladas sobre sí misma. Dependiendo del grado de enrollamiento, y la manera como se conforma la lámina original, el resultado puede llevar a nanotubos de distinto diámetro y geometría interna. Estos tubos, conformados como si los extremos de un folio se uniesen por sus extremos formando un canuto, se denominan nanotubos monocapa o de pared simple. Existen, también, nanotubos cuya estructura se asemeja a la de una serie de tubos concéntricos, incluidos unos dentro de otros, a modo de muñecas matrioskas y, lógicamente, de diámetros crecientes desde el centro a la periferia. Estos son los nanotubos multicapa. Se conocen derivados en los que el tubo está cerrado por media esfera de fulereno, y otros que no están cerrados. Están siendo estudiados activamente, como los fulerenos, por su interés fundamental para la química y por sus aplicaciones tecnológicas. Es, por ejemplo, el primer material conocido por la humanidad capaz, en teoría, de sustentar indefinidamente su propio peso suspendido sobre nuestro planeta; una condición necesaria para la construcción de un ascensor espacial.



a.diamante
b.grafito
c.diamante hexagonal
d.fulerenoc60
e.fulereo540
f.fulerenoc70
g.carbono amorfo
h.nanotubo

Línea de tiempo de los nanotubos
1952 Primera evidencia de la existencia de nanotubos de carbono.
1991 Descubrimiento oficial por Iijima .
1993 Descubrimiento del primer nanotubo monocapa.
1991-2000 Producto de interés principalmente académico.
2000-2005 Se investiga su uso industrial.
2005-2010 Desarrollo de aplicaciones industriales.
2010 Gran desarrollo de aplicaciones integradas a productos.




MAPA CONCEPTUAL





grupos funcionales organicos


los grupos funcionales son estructuras submoleculares, caracterizadas por una conectividad y composición elemental específica que confiere reactividad a la molécula que los contiene. Estas estructuras reemplazan a los átomos de hidrógeno perdidos por las cadenas hidrocarbonadas saturadas. Los grupos alifáticos, o de cadena abierta, suelen ser representados genéricamente por R (radicales alquílicos), mientras que los aromáticos, o derivados del benceno, son representados por Ar (radicales arílicos). Los grupos funcionales confieren una reactividad química específica a las moléculas en las que están presentes.

grupos alfaticos


Funcionalización
La funcionalización es la adición de grupos funcionales en la superficie de un material por métodos de síntesis química. El grupo funcional agregado puede ser sujeto a métodos de síntesis ordinarios, para agregar virtualmente cualquier tipo de compuesto orgánico a la superficie.
La funcionalización es utilizada para modificaciones de la superficie de materiales industriales, con el fin de lograr propiedades de superficie deseadas, como recubrimientos impermeables al agua para parabrisas de automóviles. Además, los grupos funcionales son usados para unir covalentemente moléculas funcionales a la superficie de dispositivos químicos y bioquímicos, como microarreglos y sistemas microelectromecánicos.
Los catalizadores pueden ser unidos a un material que ha sido funcionalizado. Por ejemplo, el sílice es funcionalizado con silicona de alquilo, donde el alquilo contiene un grupo funcional amino. Un ligando tal como un fragmento EDTA es sintetizado en la amina, y un catión metálico es complexado en el fragmento de EDTA. El EDTA no está absorbido en la superficie, pero está conectado a ella por un enlace químico permanente.
Los grupos funcionales también son usados para unir covalentemente moléculas como tintes fluorescentes, nanopartículas, proteínas, ADN, y otros compustos de interés para una variedad de aplicaciones.

ácido etilendiaminotetraacético EDTA


FUNCIONES NITROGENADAS


Amidas, aminas, nitrocompuestos, nitrilos. Presencia de enlaces carbono-nitrógeno: C-N, C=N ó C≡N


FUNCIONES OXIGENADAS

grupo hidroxilo

grupo carbonilo

Ácido carboxílico

El grupo carboxilo actuando como ácido genera un ión carboxilato que se estabiliza por resonancia

Funciones halogenadas

Compuestos por carbono, hidrógeno y halógenos.
Grupo haluro Haluro R-X halo- _
Grupo acilo Haluro de ácido R-COX Haloformil- Haluro de -oílo

La combinación de los nombres de los grupos funcionales con los nombres de los alcanos de los que proceden genera una nomenclatura sistemática poderosa para denominar a los compuestos orgánicos.

Los átomos que no contienen hidrógeno en los grupos funcionales se asocian siempre con enlaces covalentes, así como el resto de la molécula. Cuando el grupo de átomos se asocia con el resto de la molécula primeramente mediante fuerzas iónicas, se denomina más apropiadamente al grupo como un ion poliatómico o ion complejo. Todos los anteriores se denominan radicales, utilizando el término radical con el significado que precede a radical libre.

HIDROCARBUROS
alcanos



alquinos






aldehido




hidroxilo (alcohol)







1 comentario: